

Work Status Report Magnet Controls and Monitoring Systems of Halls A, B, C, and D

Pablo Campero Detector Support Group 05/01/2019

Contents

• Overview

- •DSG contributions
- Status and upcoming tasks
- Conclusions

Hall A – Magnets Overview

Plan view of left and right HRS with the magnets

ENERGY Office of Science

< JSA

Hall A Magnets - Dipole Power Supply Controls

10 V, 2000 A DC Dynapower dipole magnet power supply

Existing 1747-L511 SCL 500 series PLC on PSU controls of dipoles on right and left arms

ENERGY Science

JSA

- Dynapower power supplies
 - Power L-HRS and R-HRS dipoles
- Allen-Bradley SLC 500 PLC system
 - Monitored interlock circuits and controlled switches
- Issues
 - PLC faults required access to hall to recover normal operations
 - Controller lifecycle status discontinued
 - Production ended Jan 2017 +

DSG recommended and procured

• Allen-Bradley CompactLogix

- -Standardization across Physics division
- -Nearly all existing modules have direct replacement
- -On-the-fly code changes possible
- -Low cost compared to other systems
 - ~\$4,500/PLC system
- -PLC system comprises
 - L30ER controller (x1)
 - DC input module (x3)
 - DC output module (x4)

• Three PLC systems

ENERGY Office of Science

- Two for dipole PSUs (left and right arms of HRS)One spare
- PLC systems received March 2019

< JSA

• Converted code from RSLogix 500 to Studio 5000

-PLC code in Studio 5000 V. 28 is compatible with Windows 10

• Developing

-Software tests to verify system's operations before and after PLC replacement

-Test station to test PLC controllers and IO modules

PLCs to be implemented June 2019

Hall B Magnets – Torus Instrumentation and Controls Overview

• Torus

- -6 coils
- -Max current 3770 A
- —Max 3.58 T

• DSG developed

SoftwarePLC and cRIO programs

- -Instrumentation
 - Device's firmware upgrade

Hall B Magnets – Solenoid Controls and Instrumentation Overview

U.S. DEPARTMENT OF Office of Science

Office of

SJSA

- Solenoid
 - -5 coils
 - -Max current 2416 A
 - -Max field 5 T

• DSG developed

- -Software
 - PLC and cRIO codes
- -Instrumentation
 - Sensor calibration
 - Device's firmware upgrades

Hall B Magnets – Distribution Box Instrumentation and Controls

• Distribution Box

- Provides common reservoir for torus and solenoid
- Supplies LN_2 and He for torus
- Supplies He for solenoid

Office of

ENERGY Science

• Distribution Box PLC system

- Controls and monitors instrumentation
- Communicates with torus and solenoid PLCs
- Interlocks cryogenics by closing electric valves
- Provides inlet temperature monitoring for solenoid and torus PLCs

-JSA

Distribution Box Controls diagram

<u>Contributions to all aspects of torus</u> <u>and solenoid</u>

- Controls and Monitoring
 - Developed PLC code for solenoid
 - Instrumentation and sensors
 - Power-up/down (controls Danfysik power supply)
 - Cryogenics operations
 - Interlocks
 - Communications with EPICS, power supply, torus, and distribution box PLCs
 - Developed LabVIEW code
 - Controls and monitoring of temperature, load cells, hall sensors
 - <u>Fast data acquisition</u> for voltage tap measurements
 - Upgraded LabVIEW software for solenoid and torus
 - -Developed java scripts

ENERGY Office of Science

- Converts RS-Logix Sequence of Events (SOE) timestamps format to UNIX time
- Implemented SOE timestamp EPICS screen

< JSA

Solenoid fast DAQ cRIO	So	lenoid	fast	DAQ	cRIO
------------------------	----	--------	------	-----	------

	04/19/2019 09:38:12			Solenoid and Toru	s SO	E Timestamp	s]
Sol	Solenoid			Torus					
0	VCL_Lead_T	0	0	N/A		VCL_Lead_T	0	0	N/A
1	LHe_LL1	0	0	N/A	1	LHe_LL1	0	0	N/A
2	LHe_LL2	0	0	N/A	6	PLC_Fast_Dump	0	0	N/A
3	Splice_T1	0	0	N/A	8	Watchdog	0	0	N/A
4	Splice_T2	0	0	N/A	9	Lead_Water_Flow	0	0	N/A
5	MainContact	0	0	N/A	10	VT_Cable	0	0	N/A
6	PLC_Fast_Dump	0	0	N/A	11	System_Cable	0	0	N/A
8	Watchdog	0	0	N/A	12	QD1_Sum	0	0	N/A
9	Lead_Water_Flow	0	0	N/A	13	QD2_Sum	0	0	N/A
10	∨T_Cable	0	0	N/A	14	QD3_Sum	0	0	N/A
11	System_Cable	0	0	N/A					
12	QD1_Sum	0	0	N/A					
13	QD2_Sum	0	0	N/A					
15	DumpContact	0	0	N/A					

EPICS screen shows SOE timestamps to determine the first fault to propagate in solenoid/torus which caused the fast dump

DSG - Magnets Support

• Installation

- -Torus and solenoid instrumentation
 - Replaced faulty cRIO controllers
- Terminal servers
 - For remote RS232 serial communication with cRIOs

• Upgrades

- Control device's firmware
 - Cryo-con temperature monitors

Calibration

- -Temperature, load cell, and hall sensors
- -Quench detection units

• Debugging and repairs

- -Magnet power supplies
 - Modified and tested control boards
 - LCW inlet/return lines to avoid differential pressures going over set threshold values in MPS

Torus FastDAQ cRIO chassis

Disconnected hoses on SCR at Torus MPS

Moxa Terminal Server

Flow switches located internally in MPS

Cryo-con-18i temperature monitors

DSG - Magnets Support

• Analysis

- Investigation of out of plane forces and load cell analysis

• Documentation

- Reports and notes
- Controls faults during fast dump events for torus and solenoid
- -Instrumentation, circuits, and control diagrams
- -cRIO and PLC critical components spares list
- Pre-power up interlock test procedures
- On-call support 24/7

Hall B Magnets – Status

- Controls systems running efficiently
- Torus and solenoid are in good health

Tyler connecting scope to monitor solenoid voltage <u>tap trips on quench</u> detectors

Hall B Magnets – Tasks for Summer 2019

- Perform pre-power-up instrumentation and interlock checkouts
- Update firmware for MPS control boards
 - Verify MPS communications (local/remote) and interlocks for MPS
 - Verify and calibrate MPS set slew, set output, induced fast dumps from EPICS GUI bottom and LHe low level
 - Test low current discharge at 100 A and a medium at 300 A (at different slew rate)
- Test magnets in reverse polarity
- Implement rewiring of PLC watchdog
- Move hardwired interlocks from the fast-dump circuit to the slow ramp-down circuit
- Upgrade firmware for torus/solenoid and Distribution Box PLC controllers

Hall C Magnets – Overview

- High Momentum Spectrometer (HMS)
 - Three superconducting quadrupoles
 - One superconducting dipole
- Super High Momentum Spectrometer (SHMS)
 - Three superconducting quadrupoles (Qx)
 - One superconducting horizontal bender (HB)
 - One superconducting dipole

System	Magnet	Values a	at Maximur	n Momentum
		Momentum [GeV/c]	Current [A]	Field or Gradient
HMS	Q1	7.4	980	2.03 T
	Q2	7.4	830	
	Q3	7.4	370	
	Dipole	7.4	3000	
SHMS	Q1	11	3930	2.56 T
	Q2	11	2455	7.9 T/m
	Q3	11	3630	11.8 T/m
	Dipole	11	2480	7.9 T/m
	HB	11	3270	3.9 T

JSA

Hall C HMS magnets - side view

Hall C SHMS magnets - side view

Hall C Magnets – SHMS Controls and Instrumentation

ENERGY Office of Science

Office of

SJSA

 Developed Software -PLC programs

• Implemented hardware

- Swapped network modules
- -Installed power supply relay cards

Hall C Magnets – HMS Controls and Instrumentation

U.S. DEPARTMENT OF Office of Science

Office of

< JSA

- Developed Software
- -PLC programs

Implemented hardware

- Redundancy and communication modules
- **—**NMR PT2606

List of PLC work done

Item	Description	Status	Comments
1	HMS and SHMS dipole field regulation routine	Completed	Completed on 09/13/2018
2	New NMR communication through PLC to PSU	Does not work as expected	Issues to lock PT2026 when field > 1.4 T
3	Test Ethernet vs Controlnet interface	Completed	Completed on 06/13/ 2018
4	Swapping of Controlnet by Ethernet modules in SHMS	Completed	Completed on 7/13/2018
5	Add spectrometer rotation electric break control	Completed	Completed on 08/03/2018
6	Add HMS Spectrometer vacuum to controls	Completed	Completed on 07/23/2018
7	Data logging upgrade, install, and make operational	EPICS task	Will be completed in EPICS MYA Archiver
8	Develop "on loop" current regulation routine for quads PSU	Completed	Completed on 08/06/2018
9	Wire UPS status to controls	Completed	Completed on 09/13/2018
10	Modify SHMS shutter not in place status	Completed	Completed on 08/03/2018
11	Add HMS shutter controls and status	Completed	Completed on 08/03/2018
12	Alarm notification to on-call staff	EPICS task	Will be completed in EPICS
13	Add HMS quadrupoles hall probe readouts to PLC	Completed	Completed on 08/29/ 2018
14	End of life for Windows 7 upgrade to Windows 10	Completed	Completed on 10/02/2018
15	Upgrade SHMS PLC from version 16 to version 20	Completed	Completed on 7/13/2018
16	Upgrade HMS PLC from version 16 to version 20	Completed	Completed on 01/18/2019

ENERGY Office of Science

DSG - Magnets Support

• Development of PLC program for SHMS and HMS

- -Dipole field regulation
- Monitoring of UPS backup power supply
- -HMS spectrometer vacuum controls
- -Quadrupoles current regulation
- PLC heartbeat

Programs to be implemented during summer 2019 shut down

• Development of CSS EPICS screens

- -Magnets cryogenics
 - SHMS and HMS magnets nitrogen and helium temperatures screens (X9) completed
- -Horizontal bender voltage tap screen completed
- PLC-EPICS communication test
- -Simulation of PLC-EPICS data transfer screen

U.S. DEPARTMENT OF Office of Science

Office of

JSA

SHMS-horizontal bender voltage taps screen

	PLC TO EPICS		EPICS TO PLC		
DATA TYPE	SET PLC TAG	READ PLC TAG	SET PV	READ PV	
BOOLEAN	0		ON		
STRING	Test in Progress	progress	Writing on PLC	Writing on PLC	
TMIZ	21	21	125	125	
DINT	21210000	21210000	36555	36555	

CSS screen developed to simulate PLC tag to EPICS data transfer

DSG - Magnets Support

- For phased upgrade of SHMS PLC communication modules
 - <u>Tested compatibility and performance of PLC</u> system running with Controlnet and Ethernet communication modules

Swapped Controlnet modules with Ethernet modules

- -SHMS Quadrupole 1 PLC chassis
- Heater Exchanger PLC chassis
 - On several occasions, Controlnet modules lost communication with Local PLC, affecting cryogenics in Hall C and other Halls that uses same helium supply (ESR)
- Upgraded

ENERGY Office of Science

- <u>PLC software and firmware for HMS and SHMS</u> control systems to run in Windows 10 environment
- -PLC software for Skylla7 and Controls7 Hall C computers/laptops
- SHMS PLC controls systems to V20, compatible with Windows 10

Stand-alone PLC setup used for Ethernet/Controlnet compatibility test

SHMS primary and secondary PLC chassis with PLC controller, redundancy, Ethernet, and Controlnet modules

• Installed NMR unit and hall probe in HMS dipole

- Implemented ROC-RK3328-CC SBC card
- Set up Metro-Lab PT2026 NMR unit
- Documented
 - Instrumentation and network diagrams

JSA

- PLC layouts for HMS and SHMS
- On-call support 24/7

U.S. DEPARTMENT OF Office of Science

ROC-RK3328-CC SBC card implemented on Hall C control systems

Metro-Lab PT2026 NMR unit

- PLC upgrades completed
- Developed PLC programs to be implemented during summer 2019 shutdown
- Developing CSS-BOY screens for magnets

Hall D Magnet - Overview

- GlueX spectrometer's superconducting solenoid
 - -# of coils: 4
 - -Max current: 1350 A
 - -Field: $\sim 2 \text{ T in bore}$

solenoid

< JSA

U.S. DEPARTMENT OF Office of Science

Voltage taps and PXI fast DAQ EPICS screen for solenoid

DSG - Magnets Support

• Development

- -PXI control systems LabVIEW program
 - PXI control systems used for fast DAQ of solenoid voltage taps
- -Interlock HMI screen
- -<u>SQL program</u> for voltage tap analysis
- Calibrated PXI ADC input modules

-Modules read solenoid voltage taps

- Tested faulty PXI controllers
- Specify and procure —New PXI controller e-8840
- Generated PLC layouts

ENERGY Office of Science

• Provide on-call support 24/7

JSA

Brian checking ADC input modules

Hall D Magnet – Upcoming Task

• Replace old PXI controller by new PXI controller

- -Old NI-PXI e-8135 controller
 - Allows data transfer rate to EPICS up to 10 KHz
 - Loss communication several times
 - Needed hardware reboot to bring controller back to normal operations
- -New PXIe-8840 controller

ENERGY Office of Science

- Current ADC input modules installed allows data transfer with PXIe-8840 controller at a rate up to 250 KHz
- Testing required after the PXI controller implementation

JSA

Conclusions

DSG contributes to all aspects of magnet controls and monitoring systems across the Physics division

- Develops software
- Implements instrumentation
- Tests and debugs
- Investigates and solves
- <u>Performs maintenance</u>
- Specifies and procures
- Develops documentation
- Provides on-call support

Thank You

DSG staff involved

Mary Ann Antonioli, Peter Bonneau, Pablo Campero, Brian Eng, Amanda Hoebel, and Tyler Lemon

